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U The Dictionary as an Abstract Data Type

* Frequently, the following operations are needed in an algorithm and
executed a lot of times:

* Insert (key,value)
* Sometimes, keys are unique, sometimes not!

* Retrieve a value by its key (or all values with the same key)

* Wanted: O(1) for both operations

* Implementations:

e Hash table

* Sorted array? nope, not even amortized complexity is in O(1)
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U Application: Intersection of Point Clouds

* Given: two point clouds representing two surfaces

* Task: compute "intersection" of the surfaces
* If surfaces are continuous — intersection is usually a set of curves in space
e Here: intersection = set of points close to those curves

* Approach:
e Superimpose background 3D grid

* Find voxels occupied by both surfaces

[Alcantara et al., Siggraph 2009]
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Y Representing Geometry in a Voxel Grid

* Voxel grid = 3D grid, with voxels = empty or occupied

* Example:

* 10243 voxel grid = 1 billion voxels

* Only 3.5 million voxels occupied = 0.33%

* |n practice: # occupied voxels € O(N2), where N = voxel grid resolution

* |dea: store voxel grid in hash table (aka. spatial hash table)

e Key = integer coordinates

X coord y coord z coord
\ A A J
Y Y Y
10 Bit 10 Bit 10 Bit

e Or any other arrangement (e.g., Morton code)

* Value = color, normal, ...
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Y Algorithm for Point Cloud Intersection

* Given: two point clouds with normals
e E.g. from Kinect, upload to GPU
* First stage: build spatial hash table using one thread per point

* Transform point by user-defined transformation (e.g., viewpoint transform)
e Calculate integer x, y, z coordinates (scaling / rounding)

* Assemble key (shift bits, or interleave bits for Morton code)

- /N Voxels = keys
T T T 1T T T T
IOIOIOIOIOIOIOIOOOOOOOOOOOOOOOOOQOO
f W\—; Points = values
o N RN DN gy e
T T
(M I TTTTTTTTTTTTT] Avgnormal
(M I TTTTTTTTTTTTT] Avg color
(W TTTTTTTTTTTTTT] # points
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* Second stage: find intersecting voxels

* One thread per occupied voxel

e Translates to one thread per hash table slot, empty slots/threads do nothing

v = voxel of thread
v' = corresponding voxel in other object's hash table

if v' 1s occupied:
mark both v and v' as intersecting

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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* Third stage: determine voxels inside/outside of surtace
* One thread per occupied voxel (for both objects in parallel)

v = voxel of blue thread
if v not intersecting and
v has intersecting neighbor v':
t=v - v' // a "tangent" to the blue surface in v'
n = normal of voxel in red object corresponding to v'
normalize n and t
if t*n < cos(110°):
mark v as "inside red"
if t*n > cos(70°):

mark v as "outside red" = .

/

I 'm
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* Fourth stage: propagate inside/outside status along surface voxels
* One thread per occupied voxel
* Do nothing, if own status is already set
e Otherwise, repeatedly check neighboring voxels, copy their status, as soon as they've got one

° Loop until __syncthreads count or __syncthreads or yields O

* Def. of int  syncthreads count( int predicate ):

like syncthreads, but evaluate predicate for all threads (in block), and return number of threads for
which it is non-zero (each thread gets the same result)

e Here, devise predicate that tells whether a thread has changed its status during current iteration

* Performance: ca. 20 msec/trame
* Voxel grid = 1283, point cloud = 160k
* Upload of point clouds takes another 5-10 msec / frame

* Also possible: Boolean operations on the surftaces
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Example Video

ntersect B
67 FPS
mputation: 14 ms
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Y Application: Geometric Hashing

* Well-known technique for image matching

e Task:

* Find (smaller) image (model) in large image (scene),
including position/orientation/scaling

* Preprocessing is OK - In that image

* Approach: consider only feature points

«««««

* A.k.a. salient points, corner points, interest points

140k pixels B 946 feature points (0.67%)
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First (Naive) Approach

* Preprocessing: build database of all models

* One inputimage per model

* Extract and store m feature points 7 = {F, ..., F.,} (per model)
° At runtime:

* Extract n feature points in scene image S = {S;,..., S,}

* Pick 3 non-collinear points A, B, Ce ‘F, and 3 points A', B', C' € §
(a 3x3 pairing)
* Compute affine transformation mapping A, B, C — A", B', C'

* Map all points in ‘F, calculate quality of match (e.g. RMSE)

* Repeat with all possible 3x3 pairings

* Choose optimal one (e.g., smallest RMSE)

G. Zachmann Massively Parallel Algorithms SS June 2024
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Is a model in the scene?
If so, where is it?
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Y Digression: On Calculating the Affine Transtormation

* Given A, B, Cand A', B', C' - determine M s.t. MA=A',MB=B', MC=C

* We are looking for a matrix M and vector T such that

a., _ (M M2 dx n Lx ¢
3;, mo1 Moo dy ty

B
or, equivalently /
A
a mi1 My i ax
ag, = Mmo1 Moo ty dy N2
1 0 0 1 1 ¢’
e The 3x3 pairi ' M P
e 3x3 pairing gives us ) M . A \ / B
a, b c my; my> t, a, b, ¢ A © *
afv b;, c; = mu mypn t a, b, ¢
1 1 1 0 0 1 1 1 1

* Multiplying by P-T will yield M

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 13
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Y Complexity of the Naive Method

* There are O(m3n3) possible 3x3 pairings
e Assumem = 0.01n — m € O(n)

e Cost for computing one match (given aff. transformation) € O(m) € O(n)

* In reality, it is worse, since for each model point, we need to find the closest
scene point

* Overall complexity € O(n’) — ouch!

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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Y Geometric Hashing

G. Zachmann

ldea: represent model in affinely invariant way

Pick any 3 non-collinear points A, B, C € ‘F; call this a basis

All points P; € J' can be represented wrt. this basis:

Any affine transformation of the model will leave (u,v) invariant
* Hence, (u,v)-representations are called invariants

It only rotation & translation are allowed, then construct a basis

P, = A+ u(B — A)

as follows:

o
¥ cc &
VR X

HEEEEER
N

Pi = (u,v)

v(C — A)

Pi — (U,V)

’ick any two points A, B € F (not too close together)

et a := normalize(B - A)

et b :=(ay, -ax) , i.e., the vector perpendicular to a

Represent all other pointsas P = A+ ua—+ vb

Massively Parallel Algorithms

SS June 2024 Parallel Hashing 15
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Preprocessing e

* Fill hash table with (u,v)-representations of all feature points wrt. all possible bases:

forall bases E = (A, B, C) c T :

forall other points P € 7 :

calculate (u,v) of P wrt. E
convert u,v to integer coords (scale & round)
store (P,E) with key (u,v) in spatial hash table

e Do this for all models M

* Note: can even store all models this way in one common hash table
— store (M, P,E) with keys (u,v)

* In the following: consider just one model (for sake of simplicity)
* Note: quantization of (u,v) provides actually some amount of robustness

* Slight shifts of the feature points do not change their hash table slot (in many cases)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 16
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Example

Basis 1 Hash space Basis 3
l i ¢ v - -
0
. , .
o ‘
Basis 2 iy
- . (Basis, Point)
Basis 1, P. 1
Basis 1, P. 2
< — ¢ 0 Basis 2, P. 5
¢ ‘ o Basis 3, P. 17
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* Note: more models can be added dynamically to the hash table

e Complexity of preprocessing: O(m+) per model

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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Recognltlon W &

* First phase: detect all feature points in the scene image — §

e Second phase: hypothesis generation = maintain number of "votes" for
each basis in the model

e Result: a histogram over all possible bases, one bin per basis of the model,
counting the number of votes for each basis

e The a|gOl’ithmI forall bases E € S :

clear histogram of votes

forall other points P € S :

calculate (u,v) wrt. E
convert u,v to integer coords (scale & round)
forall entries (B,X) in slot (u,v) of hash table:
increment vote count of histogram bin of basis B
forall bases B where #votes > threshold:
record hypothesis (B,E)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 19
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* Reasoning behind the algorithm:

* If E happens to be the basis where the model is present in the scene
— there is a "matching" basis B in the model

e Let M be the affine transformation from B to E

* For many points in F'= M(F), there will be a nearby pointin S

* Therefore, many points of the scene image will fall into hash table slots containing at least
one entry (B,*)

* Therefore, B will garner more "votes" than other bases of the model
* Note:
* Every hypothesis (B,E) provides an affine transformation M from model space into scene
space, such that "many" points in M(F) are "close" to a pointin §

* Meaning of "many" = "> threshold"
* Meaning of "close" = "< diameter of grid cell"

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 20
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* Third phase: test the hypotheses

o
e

° AlgOnthm: forall hypotheses (B,E):
compute affine transformation M from B to E /] (*)

transform all model points — F = M(F)

let score of (B,E) = RMSE(7,YS)
choose the hypothesis (B,E) with the highest score

* Note: in the RMSE, we consider the closest pointin §$ to each pointin F
* Use the spatial hash table over § for that, or a kd-tree (see comp. geometry)

* Note on step (*):
* We could just use the method from slide 13 (aff. trf. for 3x3 pairing)

* More robust is a least squares method (omitted here)

* From hypothesis generation, we already have a kxk pairing

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 21
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* Complexity of recognition € O(n4)

* In a way, the hash table serves as an acceleration data structure for finding
nearest neighbors quickly

* |deas:

e Use kd-trees, or

e Consider neighbor cells in the hash table, too

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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Improvement in Case of Non-Uniform Distribution of Feature Points = *s

* The distribution of the feature points in (u,v) space might be highly non-
uniform — lookup in hash table is no longer O(1)!
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* One approach: make the size of the voxels proportional to the density of the
data
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"Learn" a Good Spatial Part

Y Other Approach

elastic" net that deforms based on the

* Consider the background grid as "

density of the data

* Kohonen neural networks do just that

data distributions
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Y  Noise

* Experience shows: performance of Geometric hashing degrades rapidly for
cluttered scenes or in the presence of moderate sensor noise (3-5 pixels)

e Possible solutions:

* Make additional entries during preprocessing (increases storage)

e Cast additional votes during recognition (increases time)
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Y Another Solution for Noise

e Observations:

1. The larger the separation of basis points, the smaller the effect of noise offsets on
the final slots in the hash table

2. The closer a point is to the origin of the basis, the smaller the effect of noise
offsets on the final slot in the hash table

3. Areas in uv-space with high density of feature points contain less information
than areas with low density — hash table cells with many entries contain less
information than cells with few entries

* Weight the vote of hash table entries based on these criteria

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 28
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U Massively Parallel Geometric Hashing §

* Input: color image
* Feature point detection:

* One thread per pixel

* Apply e.g. Sobel operator at each pixel (or, ORB, BRIEF, etc.)
* If above threshold, then output Cartesian coords
e Compact output array — m feature points

* Preprocessing (fill hash table):

* One thread per basis — m?3 threads

* Each thread iterates through all other feature points: calculate (u,v), store in hash table

e Optionally: just consider a random subset of bases

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 29
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Y Object Recognition

* One thread per basis E in scene image (n3 threads, or random subset), each
one iterates over all other teature points

* For each other feature point (u,v): iterate over all values B stored in the hash
table slot for key (u,v)

* For each such basis B: cast a vote for correspondence (B,E)
e Store votes in a matrix V of size m3xn3
® (Orless in case of random subsets of /3 and 53, resp., for the bases)

e Compact V: output all basis pairs with #votes > threshold

* One thread per element, or one thread per row

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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{Zf‘%{‘i §
S

Model

Scene

e ——heihe

Moscow, RUssia

[Alcantara, 2009]
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U Traditional Hashing

* Probing for resolving collisions in hash table

* E.g., linear or quadratic probing, or double hashing

* Parallel insertion requires serialization (locking of
the hash table)

* Consequence: all threads in a block wait until the
lock-holding thread has finished

> Long probing sequences are bad for the overall
performance of all threads in the block

h 4

Al F

WAIT
WAIT

WAIT

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 32
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* Fact: parallel hash table accesses are almost always uncoalsced
e Consequence: minimize number of memory accesses

* |dea: each key k gets mapped to
a number of different hash table slots
"at the same time" by a number of

hash functions hs, ..., hn

@, ha®, bk
—7—~

h1(E) h1(G) h3(E) ho(G) ho(E) =
h3(G)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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@JJ Eviction Chains AT

e Example:

o
.
L

7™
(E)
' J

=

(D)

o

o[cR¥e] BXclicls] [Alclele] [a[c/olels]
hi(A)  ha(D) h3(D)
h1(E) ha(A)

* Note how keys can get evicted (hence the name) — eviction chain
* Hash functions are used in round-robin fashion
* In practice, "simple" hash functions work well:
* Randomly generate h;(k) = a;k + b; mod p mod m
with p = 334 214 459, m = number of slots, and randomly generated constant aj, b; € [O,p)

* Variant: XOR instead of multiplication, p =4 294 967 291 (= 232-5)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 34
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* Advantages:
* Even in the worst case, lookup time is O(1) |

* Threads do not need to lock hash table (except for the atomic swap), they can
insert/lookup their keys independently

e Note: threads in a block still need to wait for all others to finish
* Problem: insertion could fail

e Solution: stash
* During insert, a thread follows a "chain of evictions"
* If this gets too long (or ends in a cycle), give up — store key in stash
e Stash = simple array, or hash table with very low load factor

* |In practice, only 5 keys hit the stash

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 35
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Y ' The Algorithm

e Store key and value contiguously in memory ‘{:1"“55 HashEntry

* Memory access is better coalesced uint32 key;
uint32 value;

* Allows to use single atomic swap operation for both

* |nitialization of hash table: fill all slots with entries (OxFFFFFFFF, O)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing
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Y  Retrieval

fct retrieveFromHash( key ): // can be called in parallel
loop j = 0 .. n hash fct-1:
slot = hash fct( j, key ) // = hj(key)
if table[slot] == key:
return table[slot].wvalue
if table[slot] == EMPTY: // short-circuit
break

// key is not in main hash table
i1f stash was not used during construction:
return NOT FOUND

check stash

G. Zachmann Computergraphik 1 WS June 2024 Introduction & Displays 37
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Insertion Into the Hash Table

fct insertIntoHash( key, value ): //
entry = HashEntry( key, value ) //
slot = hash fct( 0, key ) //

repeat max tries:
entry = atomicExch( & table[slot], entry )
key = entry.key
if key == EMPTY: //
return true
// else, entry got evicted

for j = 0 .. n hash fct-1: //
if hash fct(j, key) == slot: //
break //

j = (j+1) mod n hash fct //

slot = hash fct(j, key)

try to append entry to stash (or insert if stash
if that fails:

signal failure to caller,

can be called in parallel

construct instance of slot entry
= hy (key)

the slot was empty before the exch

n from previous slide

we found the h; that put entry here
exactly one j must break

try '"next" hash fct

is a hash table)

rebuild whole hash table with different set of random hash functions

G. Zachmann Computergraphik 1 WS June 2024
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* For sake of simplicity, the previous pseudo code always starts at ho

* Theoretically sound would be to start at h;, where i is picked randomly

* Hence, this method is called Random Walk Insertion

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 39
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Question: Why Evict Right Away? .0

 Why not check all slots h1(k), ..., hn(k) first?
Then, if there is a free slot among those, place the key k in that free slot?

* This could be extended in a breadth-first search manner: if all h1(k), ..., ha(k) are

occupied, then consider each key ki in each slot hdk); for each k;, check if they have a
"free" slot among their set of possible slots, hi(ki), ..., hn(ki); etc.

e This is called BFS Insertion

e Two reasons:

1. "Looking" at all the slots would require us to lock them (or the whole hash table);

otherwise, by the time we insert k in a (formerly) empty slot hj(k), it could already
be occupied (by another key from another thread)

* In a purely sequential program, we wouldn't need to lock

2. Even in a single-threaded program, experience has shown this would not gain
very much [Pagh, Rodler, 2004]

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 40
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Properties (w/o Proof)

* Theorem (w/o proof):
Both lookup and delete take O(1) worst-case time.

Insertion takes O(1) expected amortized time.
(Details omitted, see [Walzer, 2022])

* Maximum load factors, such that a placement for all keys exists with high

probability, i.e., 1 — —35 :

n 2 3 4 5 6 7 # hash fct's

#keys
#slots

N/M 0.5 0918 0.977 0992 0.997 0.999 load factor =
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@) On the Set Of HaSh FU nCt|OnS [Dietzfelbinger, Schellbach, 2009]

* Don't use multiplicative hashing, i.e., hash functions of the form
h(k) = ((a-k) mod 2") 2"~
with w = word size, M = 2™ = #slots, 0 < a < M, a odd.
Also, in case of high load factor, don't use linear hash functions, i.e.,
h(k) = ((a-k+ b) mod p) mod m
where p > M is a prime.

* Instead, use polynomial hash functions, i.e.,

F-1
h(k) = (Z ai-k' mod p) mod m
i=0

where p = large prime, g; are chosen randoml|
4

* This family of hash functions is -wise independent (hash codes "behave" randomly)

G. Zachmann Massively Parallel Algorithms SS June 2024 Parallel Hashing 42



Bremen

Y A Quick Excursion into Theoretical Computer Science

* Question: what is the probability that cuckoo hashing works?
* Rephrasing:

o Let keys =K={x1, ..., xn}, slots=5={1,.., M} , M>N

e Assume M=cN , ¢>1fixed (e.g.,,c=1.4)

 1/c =load factor (I'll call c a load factor, too)

* For each x;, there is a given (random) set of permissible slots:

Si=1{ji, ..., jt} C S, where j; = hi(x;)

* Can we find a mapping 7 : K — S such that all z(x;) are mutually different, and
Vi:T(x;) € S5;?
* What is the probability of finding such a v ?
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* Trick T: associate a rectangular matrix A with the keys and slots

* Every row corresponds to one key, every column corresponds to one slot in the
hash table

* For each key x;, we fill its row in A as follows:
writea "1" in columns ji, ...,/ , and O everywhere else

e S0, Ais an NxM matrix over {0,1} (more columns than rows)
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* Example:

e N=4keys, M=7slots, n= 3 different hash functions

e $1={2, 4, 5}
* 52={1, 2, 6}
* 535=1{3,4,7)
e S4={1, 3, 6}

e Matrix

A —

= O = O
OO Rk
- O O
O = O ==

G. Zachmann Massively Parallel Algorithms
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* Trick 2: associate a linear system of equations with the §;

* The system is
Az=b
where all variables are only O's and 1's , and addition is modulo 2,
l.e., arithmetic is over the field Z, (so we have, for instance, an inverse)

* Choose b € {0,1}" randomly
- Exactly which b is not important, important is its randomness

* In the end, we won't care about the solution z (if any)
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@J) The chain of arguments

It the system has a solution (1)
— A has maximal rank in rows = N (i.e., all rows are linearly independent)  (2)

= A has also maximal rank in columns — N
= we can pick N columns from A and form square matrix A" with det(A') # 0

Consider the Leibniz formula for the determinant:

det(A") = Z Sign(g)ai,au)a/z,a(z)"'3§V,a(N)
og€Perm(N)

Remember the special contents of A, and remember we calculate in Z,!

So, det(A") # 0 = at least one of the product terms must equal 1

Take the ¢ that produces that term (or one of them)
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* "Translate" the permutation ¢ into a mapping z:

every o(i) corresponds to a column in A', which was an original column in A
— assign that column number to (i)

e Consequently, the term a; r(1)a2+2) - - an,~(v) = 1

* In other words, every a; ;i) = 1
* Remember that a row represents the set of possible slots for its key

* So, we have found one slot per key out of the permissible ones and they don't
collide — cuckoo hashing works

* For this set of keys, and this set of hash functions!
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@J) Example continued

* We can find 4 linearly independent columns (over Z, )

/0010110 0) (010 1)

1100010 , 1100
A=1oo011001] = “=loo0 10

\l 010010 \1 0 1 0/

1 |

1T 2 3 5

e With o(1)=4, 0(2)=2, c(3)=3, c(4)=1, the product in the det. formula
3/1,0(1)3/2,0(2) T 37v,a(/v) =1#0

* This translates to 7(1)=5, t(2)=2, 7(3)=3 und t(4)=1 for A

* Indeed, 5isin §1 (= possible slots for key 1), 2isin Sz, 3inS3, 1TinSs —

* We can store all keys in the hash table in one of their permissible slots
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@J) Now for the Probability

* Let A be arandomly chosen NxM matrix, but with the additional constraint that
there are exactly n 1's in each row. Let b be a randomly chosen {0,1} vector of
length N.

What is the probability that the system
Az=Db
has a solution?

* Theorem (w/o proof):
It M =c-N, and ¢ > ¢,, then such a system has a solution with high probability.

* The meaning of "high probability":
as N (and, thus, M) go to infinity, the probability approaches 1
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* Theoretical and practical bounds for the load factors, ¢, i.e., #slots > cx#keys:

G. Zachmann

# haSh fCt h Ctheor

Massively Parallel Algorithms

2

3
4
5

Cpractical
- 2.1
1.089 1.1
1.024 1.03
1.008 1.02
SS June 2024
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U Performance of Cuckoo Hashing
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* Performance for insertion depending on hash table load tactor and number
of keys (on GTX 470, using 4 hash functions):

G. Zachmann

# key/value pairs inserted per second

Millions

400

350

300

250

200

100

-8-2N

—=o—1.42N

2048 8192

Massively Parallel Algorithms

32768

131072

524288

2097152

# keys (N) inserted in parallel

SS

June 2024
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* Performance for retrieval depending on hash table load tactor and number
of keys (on GTX 470, using 4 hash functions, no failed keys):

. 800
© c
c S
O £ 700
5 = O o0 0O
(Vo]
S 600
$ O
O 00 O o

3 500
"= -=-2N
o
> 400 — —6—1.42N
(Vo]
=
©
o X ——
W
5 200
)
>
= 100
O
< n X
+= 0 :
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# keys in table (N)
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* Performance depending on percentage of failed queries (key is not in hash
table), N = 8.4 million keys, GTX 470, 4 hash functions

* Failed query =4 regular probes into hash table, plus 1 probe into stash

G. Zachmann Massively Parallel Algorithms

Percentage of failed queries

SS June 2024
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Y Comparison with a sorted array (#slots = 1.42x

G. Zachmann

# key/value pairs per second

keys)
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Ideas for Further Investigation

e Store the hash function ID with the key in the slot (e.g. in a few bits)
* If it gets evicted, the thread doesn't have to re-compute this ID

* |s it possible to utilize shared memory for the build phase?
* Warning: Alcantara tried it

* |s it possible to optimize the hash functions?

* Choose a set of random hash functions, test insertion with a large number of random keys,
determine length of eviction chains

* Try a number of other hash function sets, pick the "best" one
* Instead of using the hash functions in round-robin fashion, randomize this part, too

* Theoretical question: how does that change probability of success?

* More hash functions hurt, but only because of global memory access — can we use 2
bytes next to a slot for hi,1 ?
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